Характеристика и значение основных этапов эмбрионального развития: предзиготный период, оплодотворение, зигота, дробление. Их регуляторные механизмы на генном и клеточном уровнях

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ

Сущность стадии дробления. Дробление - это ряд последовательных митотических делœений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы. Первое делœение дробления начинается после объединœения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте- росток, зачаток). Особенностью митотических делœений дробления является то, что с каждым делœением клетки становятся всœе мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объёмов ядра и цитоплазмы. У морского ежа, к примеру, для этого требуется шесть делœений и зародыш состоит из 64 клеток. Между очередными делœениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и делœения следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость - бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределœения желтка в яйце. По правилам Сакса - Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного делœения - в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всœех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого делœения соответствует плоскости двусторонней симметрии. Плоскость второго делœения проходит перпендикулярно плоскости первого. Обе борозды первых двух делœений меридианные, ᴛ.ᴇ. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделœенной на четыре более или менее равных по размеру бластомера. Плоскость третьего делœения проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера - микромеры, на вегетативном - четыре более крупных - макромеры. Затем делœение опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, ᴛ.ᴇ. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, в связи с этим такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость делœения бластомеров. В случае если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределœением желтка и степенью синхронности делœения анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего делœения, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением делœения с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.

А - ланцетник; Б - лягушка; В - птица; Г - млекопитающее:

I -два бластомера, II- четыре бластомера, III- восœемь бластомеров, IV- морула, V- бластула;

1 -борозды дробления, 2 -бластомеры, 3- бластодерма, 4- бластоиель, 5- эпибласт, 6- гипобласт, 7-эмбриобласт, 8- трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров

Рис. 7.2. Продолжение

К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

К примеру, весь цикл делœения в яйцах морского ежа длится 30-40 мин при продолжительности S-фазы всœего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всœех веществ, и тем больший, чем она крупнее. Перед каждым делœением происходит синтез ДНК и гистонов.

Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всœех репликонах одновременно, синхронно. По этой причине время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.

В начале дробления другие виды ядерной активности, к примеру транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, к примеру, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для делœения клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет делœение цитоплазмы - цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всœего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. По этой причине цитоплазма разных бластомеров различается по химическому составу.

Дробление - понятие и виды. Классификация и особенности категории "Дробление" 2017, 2018.

  • - Политическое дробление империи.

    В конце XII – начале XIII в. на основе общего социального и экономического оживления Германии в политической структуре империи обозначились важные изменения: прежние феодальные области (герцогства, архиепископии) превращались в почти полностью самостоятельные государства.... .


  • - Оплодотворение. Дробление.

    ОПЛОДОТВОРЕНИЕ Лекция 8 Оплодотворение - это вызываемое сперматозоидом побуждение яйца к развитию с одновременной передачей яйцеклетке наследственно го материала отца. В процессе оплодотворения сперматозоид сливается с яйцом, при этом гаплоидное ядро... .


  • - Дробление полезных ископаемых

    ПОДГОТОВИТЕЛЬНЫЕ ПРОЦЕСЫ ЛЕКЦИЯ № 4 Промывка полезных ископаемых Промывка используется при обогащении россыпных месторождений редких и благородных металлов, руд чёрных металлов, фосфоритов, каолинов, стройматериалов (песка, щебня),...

  • Дробление (сегментация) у отдельных представителей разряда позвоночных имеет в общем одинаковое течение; однако, как уже было упомянуто выше, оно находилось под влиянием факторов, которые во время филогенеза воздействовали на развитие в виде последствий влияния внутренней и внешней среды, в которой организмы проживали во время своего родового развития (ценогенетические факторы).

    При наблюдении за изменениями , происходящими в яйцеклетках согласно филогенетическому развитию яиц отдельных представителей разряда позвоночных, можно заметить, что яйцевые клетки в значительной мере отличаются друг от друга по содержанию питательного и строительного вещества - желтка. Яйцевые клетки ланцетника (Amfioxus), организма, который в филогенетическом отношении считается наиболее низко организованным существом, но который уже обладает прочной спинной областью, относятся к числу олиголецитальных.

    Однако, в соответствии с филогенетическим развитием , количество желтка в яйцеклетках позвоночных животных, являющихся филогенетически наиболее высоко организованными организмами, все более возрастает, достигая максимального количества в птичьих яйцеклетках, которые являются относительно очень крупными и полилецитальными. Под влиянием ценогенетических факторов (факторов, воздействующих из внешней среды и обусловливаемых изменением образа жизни, а следовательно, и развития) количество желтка в процессе филогенетического развития по направлению к человеку все более уменьшается, благодаря чему яйцеклетки человека и высших млекопитающих становятся снова (вторично) олиголецитальными.

    Наличие вариабельного количества желтка оказывает, как уже было сказано выше, значительное влияние на процесс дробления яйцеклетки. Яйцевые клетки с малым содержанием желтка (олиголецитальные) дробятся полностью, то есть все вещество оплодотворенного яйца при дроблении делится на новые клетки, бластомеры (яйцеклетки голобластического вида). Наоборот, у яйцеклеток, содержащих желтка больше, или даже большое количество желтка (полилецитальных), борозды дробления непрерывно дробят только меньшую часть ооплазмы, расположенную на так называемом анимальном полюсе, где желточных гранул меньше (яйцеклетки меробластического вида).
    В соответствии с этим у отдельных представителей разряда позвоночных различаются следующие типы дробления.

    1. Полное дробление . К полному, тотальному дроблению относятся те случаи, когда в процессе дробящего деления делится вся оплодотворенная яйцевая клетка и борозды дробления распространяются по всей ее поверхности. По этому типу дробятся яйцевые клетки голобластического вида. В зависимости от содержания в ооплазме большего или меньшего количества желтка, а также в зависимости от его распределения в ооплазме, при дроблении возникают бластомеры либо сравнительно одинаковой величины (полное равномерное, эквальное, или адэквальное дробление), либо бластомеры различной величины, а именно более крупные в области с большим содержанием желтка и менее крупные в том месте, где желтка меньше (полное неравномерное, инэквальное дробление). Более крупные бластомеры называются макромерами, менее крупные - микромерами.

    Полное эквальное, или адэквальное , дробление свойственно олиголецитальным, изолецитальным яйцеклеткам (ланцетник, высшие млекопитающие и человек); по полному инэквальному типу дробятся мезолецитальные яйцевые клетки анизолецитального и умеренно телолецитального вида (некоторые низшие рыбы и земноводные).

    2. Частичное, парциальное, дробление . По частичному типу дробятся яйцевые клетки, содержащие значительное количество желтка (полилецитальные яйцеклетки), у которых из-за их больших размеров борозды дробления при клеточном делении проникают только в область анимального полюса, где находится клеточное ядро и где слой ооплазмы содержит меньше желточных гранул (высшие рыбы, пресмыкающиеся, птицы и некоторые низшие млекопитающие, яйцеродные).

    При таком дроблении на анимальном полюсе сравнительно крупного яйца дробится только круглое поле (диск), в то время как остаток яйцевой клетки (желточный шар) остается не раздробленным (парциальное дисковидное дробление). У насекомых их полилецитальные центролецитальные яйцеклетки хотя и дробятся по всей поверхности, но центр клетки, содержащий большое количество желтка, остается не раздробленным (парциальное поверхностное дробление).

    В приведенном рисунке показаны отдельные виды яйцевых клеток в зависимости от содержания и распределения желтка в ооплазме, а также в зависимости от соответствующего типа дробления.

    Период эмбрионального развития наиболее сложен у высших животных и состоит из нескольких этапов.

    Период начинается с этапа дробления зиготы (рис. 1), т. е. серии последовательных митотических делений оплодотворенной яйцеклетки. Образующиеся в результате деления две клетки (и все последующие их поколения) на этом этапе называются бластомерами . Одно деление следует за другим, причем не происходит роста образующихся бластомеров и с каждым делением клетки становятся все более мелкими. Такая особенность клеточных делений и определила появление образного термина «дробление зиготы».

    Рис. 1. Дробление и гаструляция яйца ланцетника (вид сбоку)

    На рисунке обозначены: а - зрелое яйцо с полярным тельцем; б - 2-клеточная стадия; в - 4-клеточная стадия; г - 8-клеточная стадия; д - 16-клеточная стадия; е - 32-клеточная стадия (в разрезе, чтобы показать бластоцель); ж - бластула; з - разрез бластулы; и - ранняя гаструла (на вегетативном полюсе - стрелка - начинается инвагинация); к - поздняя гаструла (инвагинация закончилась и образовался бластопор; 1 - полярное тельце; 2 - бластоцель; 3 - эктодерма; 4 - энтодерма; 5 - полость первичной кишки; 6 - бластопор).

    В результате дробления (когда количество бластомеров достигнет значительного числа) образуется бластула (см. рис. 1, ж, з). Часто она представляет собой полый шар (например, у ланцетника), стенка которого образована одним слоем клеток - бластодермой. Полость бластулы - бластоцель, или первичная полость, заполнена жидкостью.

    На следующем этапе осуществляется процесс гаструляции - формирование гаструлы. У многих животных она образуется путем впячивания бластодермы внутрь на одном из полюсов бластулы при интенсивном размножении клеток в этой зоне. В результате и возникает гаструла (см. рис. 1, и, к).

    Наружный слой клеток получил название эктодермы, а внутренний - энтодермы. Внутренняя полость, ограниченная энтодермой, полость первичной кишки сообщается с внешней средой первичным ртом, или бластопором. Существуют и другие типы гаструляции, но у всех животных (кроме губок и кишечнополостных) этот процесс завершается образованием еще одного клеточного пласта - мезодермы. Она закладывается между энто- и эктодермой.

    По завершении этапа гаструляции появляются три клеточных пласта (экто-, эндо- и мезодерма), или три зародышевых листка.

    Далее начинаются процессы гистогенеза (образования тканей) и органогенеза (образования органов) у зародыша (эмбриона). В результате дифференцировки клеток зародышевых листков формируются различные ткани и органы развивающегося организма. Из эктодермы образуются покровы и нервная система. За счет энтодермы формируются кишечная трубка, печень, поджелудочная железа, легкие. Мезодерма продуцирует все остальные системы: опорно-двигательную, кровеносную, выделительную, половую. Обнаружение гомологии (сходства) трех зародышевых листков едва ли не у всех животных послужило важным аргументом в пользу точки зрения о единстве их происхождения. Изложенные выше закономерности были установлены в конце XIX в. И. И. Мечниковым и А. О. Ковалевским и легли в основу сформулированного ими «учения о зародышевых листках».

    На протяжении эмбрионального периода наблюдается ускорение темпов роста и дифференцировки у развивающегося эмбриона. Только в процессе дробления зиготы роста не происходит и бластула (по своей массе) может даже существенно уступать зиготе, но начиная с процесса гаструляции масса зародыша стремительно увеличивается.

    Образование разнотипных клеток начинается еще на этапе дробления и лежит в основе первичной тканевой дифференцировки - возникновения трех зародышевых листков. Дальнейшее развитие зародыша сопровождается все более усиливающимся процессом дифференцировки и морфогенеза. К концу эмбрионального периода у зародыша имеются уже все основные органы и системы, обеспечивающие жизнеспособность во внешней среде.

    Завершается эмбриональный период рождением новой особи, способной к самостоятельному существованию.

    Процесс, когда зигота преобразуется в многоклеточный организм, называется дроблением. Этот период является следующим после оплодотворения и включает в себя целый ряд многочисленных последовательных делений.

    Процесс дробления зиготы занимает порядка шести дней. Все клетки, из которых состоит зародыш, в медицине называются бластомерами. Дробление зиготы характеризуется своими индивидуальными особенностями.

    Интерфаза, как период, минимальна по своей длительности. Далее следуют два полноценных митоза, что и объясняет прогрессивное уменьшение зиготы. К концу шестых суток, после оплодотворения, сформировавшийся многоклеточный организм по своим размерам не превышает зиготу. Но заканчивается процесс дробления в тот момент, когда клетки зародыша становятся подобными соматическим клеткам человеческого организма.

    Завершающий и начальный этап дробления зиготы уникальны по своей структуре. В процессе колоссальных изменений происходит полноценное асинхронное и субэквальное деление. Такие данные указывают на тот факт, что дробление касается всех участков зиготы, а бластомеры появляются одинакового размера. Если клетки различны по объему, то при дроблении зиготы происходит неодновременное митотическое деление.

    Не слишком плотный конгломерат создается бластомерами примерно на восьмиклеточной стадии развития зиготы. Хотя на шестые сутки после оплодотворения, приблизительно после третьей ступени деления, клетки создают плотную структуру внутри зародыша. Такая работа именуется компактизацией и провоцирует отслойку внутренних бластомеров от наружных. Типы дробления зиготы различаются по своему периоду, и вышеупомянутая стадия – это морула. Такие центральные образования создают основную клеточную массу. А клетки, соединенные плотными контактами, служат своеобразным барьером, который призван защищать внутреннюю структуру морулы. То есть периферийные клетки создают трофобласт – клеточная масса внешнего типа.

    Завершающие процессы дробления зиготы

    В результате дробления зиготы клеточный организм превращается в зародыш. Только на четвертый день после оплодотворения зигота проникает в полость матки. В зародыше формируется своеобразная жидкостная полость – бластоцель. Теперь эмбрион представляет собой пузырек и носит имя - бластоцист. Внутри организма присутствует клеточный эмбриобласт – это внутренняя масса. Именно из этой «материи» образуется сам эмбрион и его некоторые наружные органы, которые визуализируются вне зародыша. Если внутренняя клеточная масса начнет свое деление, то такой факт приведет к образованию близнецов.

    Зародышевая часть плаценты формируется на основе трофобласта, именно он создает хорион. Примерно на четвертый день после оплодотворения клетки разрушают оболочку, то есть они изменяют прозрачную часть зародыша. Именно таким образом зигота готовится к следующему этапу своего преображения.

    Понятие «зарождение новой жизни», как правило, ограничивается исключительно ассоциациями о зачатии ребенка как о результате страстной встречи яйцеклетки и сперматозоида. Далее же, по мнению большинства, наступает беременность, плод развивается и у будущей мамочки вырастает большой живот. Чего уж тут мудрить, все банально просто… На самом же деле пренатальное развитие человека – очень важный и тонкий процесс, требующий глубокого изучения. Попробуем разобраться в тонкостях одного из его этапов – дробления зиготы.

    Зигота – это оплодотворенная сперматозоидом яйцеклетка. Именно с оплодотворения, которое может происходить в течение 3-х дней после полового акта, начинается внутриутробное развитие человека. В результате проникновения сперматозоида в яйцеклетку происходит слияние их ядер с хромосомными наборами из 23 отцовских и 23 материнских хромосом и образуется ядро с присущим всем клеткам организма, за исключением половых, полным набором из 46 хромосом. После этого происходит дробление зиготы.

    Дробление зиготы человека – 3-4-дневный процесс деления эмбриона на мелкие части-клетки путем воспроизведения их структуры аналогично структуре материнской клетки (митоза или деления по типу клонирования) с сохранением ее общего размера (около 130 мкм). Бластомеры – клетки, образовавшиеся при дроблении зиготы, также делятся, причем разными темпами, иными словами их деление не синхронно.

    В результате первого деления зиготы выходит два дифференцированных бластомера. Один, более крупный, «темный», является основой для развития тканей и органов эмбриона. Совокупность полученных при последующих делениях крупных бластомеров называется эмбриобластом. Второй, мелкий и «светлый» вид бластомера, деление которого происходит быстрее, образует совокупность себе подобных – трофобласт. С его помощью возникают пальцевидные ворсинки, необходимые для последующего крепления зиготы к полости матки. Бластомеры, не взаимодействуя друг с другом, удерживаются с помощью лишь блестящей оболочки яйцеклетки. Ее разрыв может привести к развитию генетически идентичных эмбрионов, например, однояйцевых близнецов.

    Появление многоклеточного зародыша

    В результате дробления зиготы образуется многоклеточный зародыш, состоящий из клеточных слоев эмбриобласта (внутри) и трофобласта (по периферии). Это стадия морула – период эмбрионального развития, при котором в зародыше насчитывается до сотни клеток, дробление и образование которых осуществляется по мере передвижения эмбриона по яйцеводу в полость матки. В виду отсутствия самостоятельной подвижности, перемещение дробящейся яйцеклетки происходит под влиянием гормонов прогестерона и эстрогена за счет перестальтики мускулатуры яйцевода, движения ресничек его эпителия, а также при перемещении секрета желез в маточной трубе. Где-то на 6-е сутки после оплодотворения попадание морулы в матку приводит к началу процесса бластуляции – образования бластоцисты, представляющей собой полый пузырек, наполненный жидкостью, из хорошо развитых слоев трофобласта и эмбриобласта.

    Приблизительно на 9-10 день происходит врастание (имплантация) эмбриона в стенку матки, который уже находится в полном окружении ее клеток. С этого момента у женщины прекращается менструальный цикл, и можно определить наступление беременности.

    Читайте также: